Instructional Framework

Engineering

15.0000.00

This Instructional Framework identifies, explains, and expands the content of the standards/measurement criteria, and, as well, guides the development of multiple-choice items for the Technical Skills Assessment. This document corresponds with the Technical Standards endorsed on January 27, 2021.

Domain 1: Engineering Math and Science Principles Instructional Time: 45 - 50%	
STANDARD 3.0 APPLY MATHEMATICAL LAWS AND PRINCIPLES R	ELEVANT TO ENGINEERING TECHNOLOGY
3.1 Use basic mathematical functions and tools (i.e., Google Sheets, Excel, graphing calculator, etc.)	SpreadsheetsGraphing calculatorProgrammable controllers
3.2 Use data collection and analysis to display data and verify its accuracy	 Spreadsheets Formula entry Multiple graphs and entry Data sorting Programmable controllers
3.3 Display data graphically using diagrams and working drawings	 Virtual prototyping and simulations Produce drawings and types Spreadsheets Multiple graphs and entry Kinematic graphs (e.g., d, v, and a) Data tables, charts
3.4 Use statistical measures of a central tendency (mean, median, and mode) as needed in the structured problem-solving process	 Mean Median Mode Standard deviation

3.5 Use mathematical models including algebraic, geometric, trigonometric, and calculus relationships to solve, analyze, and design solutions	 Sin/Cos/Tangent and inverse calculation and meaning Algebraic substitution, order of operation, and solutions to systems of equations Formula manipulation/Rearranging equations
3.6 Generate manually and electronically mathematical solutions and evaluate their validity	 Test reporting Quality control documentation Circuit Theory Thermodynamics Forces/Trusses Fluid mechanics Simple machines Power and energy equations Kinematics
3.7 Use English and Metric systems of measurement	 Unit conversions Unit notation Tolerances and Fit US Customary System Metric System/SI
STANDARD 4.0 APPLY SCIENTIFIC LAWS AND PRINCIPLES RELEV	ANT TO ENGINEERING TECHNOLOGY
4.1 Use the relationship among energy, work, and power to solve a variety of problems involving mechanical, fluid, electrical, and thermal systems	 Mechanical Simple machines Mechanical power Electrical Ohm's Law Kirchhoff's Law Circuit analysis Electrical power Chemical Fluids Thermal systems Hydraulics Civil Forces Trusses Torque/Moments

	Efficiency and power
4.2 Use Newton's Laws of Motion to analyze static and dynamic systems with and without the presence of external forces	 Newton's Laws of Motion Free body diagrams Force/Mass/Acceleration relationships Statics/Truss analysis Kinematics - projectile motion Rigid body Equilibrium Momentum Structural member properties Vectors Dynamics
4.3 Use the laws of conservation of energy, charge, and momentum to solve a variety of problems involving mechanical, fluid, electrical, and thermal systems	 Thermodynamics Momentum Electrical charge Energy Potential Kinetic Work Power Efficiency Conservation
4.4 Analyze relevant properties of materials used in engineering projects [i.e., chemical, environmental, mechanical (tension, compression, torque), electrical, physical, etc.]	 Chemical Environmental Mechanical Tension Compression Torque Electrical Electrical conductivity Physical Density Specific gravity Thermodynamic Heat transfer properties

Domain 2: Engineering Tools

Instructional Time: 30 - 40%

STANDARD 2.0 CREATE ENGINEERING SOLUTIONS BY APPLYING A STRUCTURED PROBLEM-SOLVING/DECISION- MAKING PROCESS 2.1 Identify the problem • Problem valid and justifiable Problem identification • Brainstorm • Stakeholder Documentation 2.2 Develop a problem statement based on facts, research, and Problem validation experience • Research • Documentation 2.3 Explore possible issues or options to the problem • Research • Existing solutions Potential stakeholders Establish criteria and constraints • Solutions • Alternatives • Drawbacks • Documentation 2.4 Select the best solution within the constraints and criteria Solution • Criteria • Constraints • Scientific principles • Potential impacts on people and the environment • Develop a design proposal • Decision Matrix • Design of Experiments Documentation 2.5 Develop a prototype or model to test the selected solution • Prototype Make a model • Technical drawings

	Documentation
2.6 Implement the solution	 Test and evaluate Iterative Quality control Safety Documentation
2.7 Evaluate the solution, and revise or repeat if necessary (i.e., Are there other solutions, better solutions, or cheaper solutions? etc.)	 Refine the design Review problem statement Select the solution Documentation
2.8 Document and report all results	 Communicate Status Assumptions Results Conclusions Report writing Present solution Project portfolio
STANDARD 5.0 APPLY TECHNOLOGY AND TOOLS TO ENGINEERIN	IG SOLUTIONS
5.1 Explain the concepts of precision, accuracy, and tolerance as they relate to measurement tools (i.e., micrometers, dial indicator, digital calipers, etc.)	 Micrometers Dial indicator Digital calipers Tolerances Standard deviation Precision Accuracy
5.2 Use measurement devices such as calipers, oscilloscopes, and digital multimeters to gather data for analysis	 Use precision and accuracy with measurement devices (micrometer and caliper) Use measuring devices to gather data (e.g., ruler, tape measure, multimeter, and graduated cylinder) Physical and Virtual Models Calipers

	 Oscilloscope Digital multimeter Voltage Current Resistance Probes Video analysis
5.3 Verify the calibration status of measurement tools (i.e., quality control, test, and retest, etc.)	 Quality control Test Retest
5.4 Use software tools to solve, model, analyze, and/or design solutions to engineering problems (i.e., SOLIDWORKS, AutoCAD, On-shape, Fusion360, Google Sheets, Excel, etc.)	 Software tools SOLIDWORKS AutoCAD On-shape Fusion360 Google Sheets Excel Tinkercad Arduino programmable controllers Raspberry-Pi programmable controllers Applicable software development Ladder Logic
5.5 Identify hazards, risks, and incidents related to tools and equipment	 Safety regulations OSHA knowledge General equipment safety rules Fire safety SDS Hazards Safety protocols
5.6 Practice safe use of tools, machines, equipment, and materials (i.e., OSHA, SDS sheets, PPE, etc.)	 OSHA SDS sheets PPE

5.7 Review fabrication methods to create potential solutions to engineering problems (e.g., 3D printing, injection molding, woodworking, and welding)	 3D printing Injection molding Woodworking Welding - virtual Soldering Applicable Software Development Design for Manufacturing (DFM) Prototypes CNC 3D printer
Domain 3: Engineering Project Management Instructional Time: 20 - 25%	
STANDARD 6.0 APPLY COMMUNICATION SKILLS TO ENGINEERING PROJECTS	
6.1 Apply technical writing skills and use visual aids to present critical information in reports (i.e., results/outcomes, conclusions, future work recommendations, etc.)	 Proposal Budget Results/Outcomes

 Results/Outcome

•	Conclusions
---	-------------

• Planning

 Practicing • Presenting

- Future work recommendations
- Visual aids

6.2 Utilize the three stages of oral presentation (e.g., planning, practicing, and presenting)

6.3 Apply communication skills, including listening skills, with project • Effective communication teams, project managers, clientele, and/or contractors • Use of soft skills • Better decisions based on different views, perspectives, ideas, 6.4 Explain the importance of multiculturalism in creative and professional decision-making (e.g., better decisions based on different and proposals views, perspectives, ideas, and proposals; fosters critical thinking, • Fosters critical thinking, analysis, and collaboration analysis, and collaboration)

STANDARD 7.0 APPLY PROJECT MANAGEMENT TOOLS AND TECHNIQUES TO ENGINEERING SOLUTIONS	
7.1 Determine the tools, materials, manpower, and money allocation required to manage the project	 Resource allocation Project management Process groups Managing a project Scope Time constraints Success criteria Goals Types of resources
7.2 Utilize time-management techniques (e.g., prioritizing and planning, creating goals, scheduling, advocating, and taking action)	 Prioritizing and planning Creating goals Scheduling Advocating (delegating/recommending) Taking action Balancing competing project constraints
7.3 Organize and maintain work using project management tools (e.g., Gantt Chart, AGILE, Kanban, Waterfall model, dashboards, task lists, project reports, and time sheets)	 AGILE Kanban Waterfall model Dashboards Task lists Project reports Time sheets
7.4 Schedule daily/weekly meetings to check status of the project and to deal with any constraints and obstacles to the project	 Update project management tools Monitor and forecast completion costs and project progress
7.5 Document and present project results/outcomes as appropriate	 Data table formats Inferences and conclusions from data tables Verbal presentation Multimedia presentation methods Written reporting Grammar Effective language

7.6 Analyze the project from various perspectives (i.e., sustainability, political, economic, health and safety perspectives, etc.)	 Sustainability Political Economic Health and safety Project evaluation Project viability Successes Failures Lessons learned
---	---

Domain 4: Engineering in a Global Society Instructional Time: 5 - 10%	
STANDARD 1.0 INVESTIGATE THE FIELD OF ENGINEERING TO AD	DDRESS THE NEEDS OF A GLOBAL SOCIETY
1.1 Define the disciplines of engineering (types of engineers) (i.e., chemical, civil, electrical, mechanical, agricultural, industrial, aeronautical, software, biomedical, etc.)	 Careers Chemical Civil Electrical Mechanical Agricultural Industrial Aeronautical Software Biomedical Preconceptions about engineering Engineering interconnections (interdependency of engineering disciplines) Need for engineers
1.2 Recognize that engineers solve a wide range of problems involving innovation, cost reduction, and more efficient/effective processes	 Problem solving Project management Innovation Cost reduction Project efficiency Research

1.3 Describe the specialties/areas of training that may lead to jobs/careers (i.e., transportation, construction, research and development, analytical design, disaster management, waste management, environmental, automation and robotics, etc.)	 Specialty Areas Civil Engineering Transportation Construction Waste management Disaster management Environmental Research and development Analytical design Automation and robotics Nuclear Areas of training University Associate degree Apprenticeships Certifications
1.4 Explore emerging fields in engineering and challenges to future work and future life [i.e., drones, electric cars, autonomous cars, Al, IoT, Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), Additive Manufacturing (AM), Smart City design, Automation, Machine Learning (ML), M2M (Machine-to-Machine), H2M (Human-to- Machines), etc.]	 Emerging Fields Drones Electric cars Autonomous cars AI IoT Virtual Reality (VR) Augmented Reality (AR) Mixed Reality (MR) Additive Manufacturing (AM) Smart City design Automation Machine Learning (ML) M2M (Machine-to-Machine) H2M (Human-to-Machines)
1.5 Analyze the societal, environmental, legal, and ethical responsibilities of engineers (e.g., Engineering Code of Ethics, economic, political, sustainability, and community health and safety)	 Engineering Code of Ethics Economic Political Sustainability Community health and safety OSHA

1.6 Determine the skills and education required to enter engineering careers (i.e., aptitude for math and science; complex problem-solving, critical thinking and decision-making; interpreting plans, schematics, and blueprints; communication skills to influence and convey facts with specificity, etc.)	 Aptitude for math and science Complex problem-solving Critical thinking and decision-making Interpreting plans Schematics Blueprints Software manipulation Programming Communication skills to influence and convey facts with specificity
---	--

